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Abstract

We consider quantization of chiral solitons with baryon number B > 1. Classical soli-
tons are obiained within a framework of the variational approach. From the form of the
soliton solution it can be seen that besides the group of symmetry describing transfor-
mations of the configuration as whole there are additional symmetries corresponding to
internal transformations. Taking into account the additional degrees of freedom leads
to some sort of spin alignment for light nuclei and gives constraints on their spectra.
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1. INTRODUCTION

Considerable recent interest in the Skyrme model [1] as a possible theory of
strongly interacting particles is a consequence of the hope that meson effective
Lagrangians can bridge the gulf between quantum chromodynamics (QCD) and
the known theory of nuclear structure.

Although everyone believes that physics of any nucleus is also described by
the QCD Lagrangian, no one has been able to obtain the basic properties of nucle
in terms of quark and gluon fields. It is very difficult to analyze the dynamics
of the quark and gluon fields in low-energy quantum chromodynamics because of
the large coupling constant.

Searching for a small parameter in QCD, 't Hooft proposed the idea of consid-
ering QCD with a large (tending to infinity) number of colors N.. Later, Witten
showed that if the limit N¢ — oo exists, then QCD is a theory of effective me-
son fields with local interactions with a coupling constants of an order of 1/N,.
Moreover, in this limit the baryon masses prove to be of an order of N, while
the number of colors completely drops out of the equations determining the size
and structure of the baryons.

It is well known that nonlinear theories can have solutions corresponding to
localized objects of finite size — solitons [2]- with the analogous dependence
of the size on the coupling constant. Therefore, Witten’s result leads to the
description of baryons as solitons of an effective meson theory. This picture does
not require any further reference to the quark origin of the effective Lagrangian.
A theory of just this type was proposed by Skyrme in 1961-1962 [1].

Nonlinear chiral theories naturally lead to soliton sectors. Already at the
classical level, chiral solitons are very similar to hadrons. They carry a definite,
rigorously conserved topological charge. This localized charge is a good candidate
for the baryon number. Chiral solitons are extended, strongly interacting objects.
They have very large mass compared with the masses of the fields involved in the
Lagrangian.

These features plus rich spectrum of generated states make chiral dynamics
a very attractive theory for low-energy phenomena in strong interaction physics.

Restricting ourselves to the simplest model of this type - the Skyrme model,
we probably cannot hope for good quantitative agreement with the experimental
data, but we can obtain a qualitatively good description of the fundamental
regularities characterizing a system of strongly interacting particles which would
support the idea that baryons are solitons of the effective meson Lagrangian.

The Skyrme model gives us a straightforward way for constructing a systemn
with an arbitrary baryon charge. We have to look for solitons of classical fields

with corresponding topological charge and then to quantize solitonic degrees of
freedom to obtain an object with nuclear quantum numbers.

Recently a specific variational ansatz was proposed independently in {3] and
[4]. This ansatz obeys the symmetry conditions formulated in [6], [7] and, being
very simple, gives the possibility to do one more step in analytical analysis of the
problem and to take into account vibrational modes, for example, the monopole
one, in a simple way. This analyses gives a natural explanation of the origin of
the ansatz used earlier in [8] and also gives some new solutions.

To obtain quantum spectra of multibaryon, one has to perform quantization of
pion field around the multisoliton classic field configuration. It is well known that
the Lagrangian describing the quantum pion field contains zero modes, which are
determined by the symmetry group of the classical soliton solution. The zero
mode should be treated in a special way. The most convenient method is to
introduce corresponding collective coordinates. This leads to the interpretation
of the soliton as a quantum particle moving in the collective coordinate space. As
will be shown, the multisoliton solutions obtained with the anzatz [3.,4] possess
additional internal group of symmetry. As a consequence, new restrictions on the
spectra of multibaryons arise.

II. ANSATZ AND SOLUTIONS FOR. STATIC EQUATIONS
Here we follow our paper [9] (see also [5]). In a variational form of the chiral
field U
U(F) = cos F(r) + i(7 - N) sin F(r). (1)

we use the following assumption about the configuration of the isotopic vector
field Vv :

N = {cos(®(4,0)) - sin(T(9)), sin(®(¢,6)) - sin(T(8)), cos(T(8))). (2)

In Eq.(2) ®(¢), T(?) are some arbitrary functions of angles (6, ¢} of the vector ¥
in the spherical coordinate system.
Let us consider the Lagrangian density £ for the stationary solution:
F? 1 2
L= 1 -Tr(Le L) + 322 Tr [Lk, Li] . (3)
Here Ly = U AU are the left currents.

Variation of the functional [, = [ £dF7 with respect to ® leads to an equation
which has a solution of the type



(6, 9) = k(6) - 6 + c(0)

with a constraint

a% [sinzT(ﬂ) -sind - @%] =0. (4)

It is easily seen from eq. (4) (see also [9]) that functions k(6) and c(8) may be
Piecewise constant functions (step functions):

(60 41 torococa,

ED 9463 forg, <o<0,,
(0, 9) = ¢

B g+ 60, forb,_ 1 <8<nx.

Moreover, k(™) must be integer in any region f#,, < 8 < 8my1, where 8, Ot
are successive points of discontinuity of d%;(8, ¢)/06. The positions of these are
the points determined by the condition

TOm)=m-x, T(x)=n.7x (5)

with integer m, as follows from eq.(4).
Now we have the following expression for the mass of a soliton

M=y. Z [at™) . A(m) 4 g(m) | glm) | C(’")], (6)

m=]

where y = x- Fy/e and z = Fy -e-r and the a{™), p(m) apd Am) Blm) (m) 40
some integrals of 7', 7%, F, F' on # and z. The functions Fm)(z) and T")(9)
have to obey the equations {9] in arbitrary space region with given number £(™),

III. THE NUMBER OF ZERO MODES

Let us consider the quantization of the static multibaryon configuration
(2),(4). This procedure umplies that the pion field is represented in the form
of a superposition of the background classical field plus small (quantum) fluctu-
ations around it:

HZ, 1) = AT) + ¢y(F,1). (7)

Then action for quantum pion field can be expanded into series in Py

825(¢)
6¢(x)64 (y)

S(4) = So(®.) + ] dzdyg®(z) - ( ) ) R )

¢=d.

linear term vanishes as a consequence of equations of motion.

The well-known problem arises due to the zero modes in ((8)). In the terms
of the path integral quantization it means that some of the integrations in the
functional space are non-Gaussian and should be carried out exactly (rather than
in the saddle - point approximation).

First question is about the number of zero modes. The reason for these zero
modes is that a soliton solution breaks explicitly some of the symmetries of the
initial Lagrangian, and each mode restores relevant symmetry of the partition
function. So, usual way to treat them is to extract the volume of the symmetry
group, in particular, introducing a set of time— dependent collective coordinates
a(t). Thus the measure in the path integral can be modified by inserting the
Faddeev - Popov unity into the form

Z:/Dnis(@:;r) =/D{a}/D;r‘e‘S("='{°}i'), (9)

where prime denotes that zero modes are excluded from the path integral measure
over the pion field.

The collective coordinates can be chosen as parameters of the soliton solution
Q.(£;t) = ®.(ZF; {a(t)}), the classical action So(®; {a}) being in fact independent
on a’s. First of all, the parameters are the ones defining the global transforma-
tions of a soliton — the coordinate of the center X » and matrices of the orientation
in configurational and iso- spaces I, R:

U(Zt) = ePX . oTT =SR2y = exn {i-.—"r'f ()N (Rg,"”(t)(x,, - Xe() }
(10)

Here we denote generators of the transtation and rotations in space and iso- space
as P, M and T respectively.

In general, the multisoliton field configuration ((2),(4)) allows for wider group
of symmetry due Lo specific form of the ansatz. The action can be seen to be
independent on the parameters <pf,') » which define the orientation (in the Ty
plane) of each sector 8 € [90~1) (s},



However, not all of the parameters we have introduced are in fact independent.
To see this, let us represent matrix I and (R) (and the relevant generators) as a
composttion of the two parts:

I:IL-I3, R:R_L'R:; (11)

where R (I3) describes the rotation around the z- (third) axis in space (isospace),
and R} (1) describes the rotation around an axis lying in the xy- (12-) plane.
Then, note that instead of the parameters ©{ the set of matrices REXY8) may
be introduced, so that

; Q)] (i) gli+1)
(i) — R3(¢0 )1 #e [0 ’0 ]:
BH0) = { , otherwise. (12)

Of course, R(%). RU) = R(j)_- RUY). Let us define, in the analogy with (12), the
set of operators S(){0) and T:g')(ﬂ), which rotate the i-th sectors around the z-
(third) axis independently. It is easy to check that

SO — g .9 — g, (13)

and

My = ;5@) =Y k0.1, 1= Z;yg‘)_ (14)

i=1

As a result, we see that independent operators of the space and iso- space
rotations may be chosen as S, , 7', and the set of ’_r;}" (or one can equivalently
choose another operator basis of the same dimension). So, independent collective
coordinates are Ry, I, and the set of J{)

IV. LAGRANGIAN IN THE COLLECTIVE COORDINATE VARIABLES

We want to find the spectra of low — laying quantum states of the multi-
baryons which correspond to the classical multisoliton field configuration (2,(4)).
One performs this most straightforward by means of the canonical quantization
method.

For our purpose the zero modes corresponding to the rotational symmetries
seemn most interesting, since they determine the rotational spectrum structure of
low - laying multibaryon states. Therefore, we restrict ourselves here to consid-
ering the zero modes only.

A natural way to proceed is to rewrite the Lagrangian in terms of the indepen-
dent collective coordinates and their time derivatives (velocities) and to derive
the Hamiltonian. However, it is more instructive to keep the overfull set of the
parameters: R, I and set of ¢(), ie. not to separate out the overall rotation
and iso- rotation around the z— (third) axis. We will obtain the constraints (13)
again at the end of the calculations.

It is convenient to define the angular velocities by

R,—‘,‘IRH = &40, jkﬂ,—]' = €i;8N. (15)

Inserting Eqs. (10), (11) and (12) into the Lagrangian, we obtain
th 3 1 243 I
L:—M+E-f’1‘r(LuLu)dx+E2—- Te[Lo, L2d%z = ~M + L' (16)

and
1 N L 2
L=y { Qs +51Qr+ Y (wak('} + 60 ¢ 93) C + 2w Ky + QoK)

i=1

(17)

Here ﬁi = Qf+9§, Ji = wf+w§ and o} -ﬁ_;_ = wi )y +wyfls, M is the classical
energy of a soliton.

K1 3 do not vanish if there is at least one sector with |k| = 1. We will consider
multigolitons with all £(*) positive. In this case K; = K, = K and the sum in
the last parenthesis gives K, -@, , so the system is a symmetrical rotator.

The quantities Q’s and K’s in the above equation may be considered as a sum
of the independent contributions from different sectors 8 € [6:i-1, 8]

N
Kio=Y K. (18)

i=1

N
QS,T = Z Q(S'.)f[‘r
i=1

Explicit expressions for all the parameters in eq. (17) are given in Appendix
A.

V. THE HAMILTONIAN FOR A QUANTIZED MULTIBARYON

Let us introduce the canonical momenta conjugated to each of the collective
coordinales as follows



5L _L g L
spp”

m = 6Qm’

Tm (19)

= dugy, '

Alfter the canonical transformation one arrives at the expression for the Hamil-
tonian

£ o™ g 1 §.7 z"’:w(i)2

Y I~ 5 : 20
B M s T ogy i, "2y T Qe t2asca (20

=1
where T3 and 53 are not independent and are related to the set of W0) via the
constraints

N
Be WO Ty
:'l=vl (21)
Ss= Y kO . W, g6) = k6. ),
i=1
which are consistent with Eqs. (13) and (14).
Note that these relations hold only in the internal frame.

The new parameters Q' and Q'r in Eq.20 coincide with Qs and Qr respec-
tively and Qs — oo, if no sectors with £} = 1 are presented. Otherwise,

’ K2 . K2 :
Vs=Qs-om @r=Qr-7- Qr=-Kk+2I ()

V1. QUANTUM SPECTRA OF MULTISOLITONS AND N UMERICAL
RESULTS

We want to construct quantum states of a multisoliton as compositions of
quantum states of individual sectors (regions) [0Gi-1),9(i;], which have definite
spin and isospin quantum numbers:

54, 763, 58 = kO, (23)

To this end, we define the most general composition and then step by step apply
the restrictions which foliow from the form of the Hamiltonian and from the
rotational symmetry.

Note, that this problem is different from the standard problem of constructing
quantum states of a system of spinning particles. Tt is due to the specific form

of our Hamiltonian, which possesses definite quantum numbers not only for total
spin and isospin with their third components but also for the operators T§” {and,
as a consequence, S((i)3 = kW) T:,Ei)) for each of the sectors.

Global spin and isospin rotational symmetry dictates that a multisoliton quan-
tum state shonld have the form of a linear combination

. .- i /
‘F(S, T; S3: T37 Tgl)) = z CT(u)'T;:"]" ' ¢,(S: T: 531 T31 T'(‘): Tg ) ) (24)
7)Y

of the expressions

T

Yo e TS, 79, 889 = kOTedy.

¥(S,T, 85, T3, 79, 1§") = s “ )

e R O
(25)

Here C are the 3nJ -symbols, and we have put the relation (21).

For the sake of simplicity of our consideration, we will proceed with the case
of the multiscliton configuration with two sectors and dismiss the spin quantum
numbers S, 53; it easily can be extended to a multisoliton with arbitrary number
of sectors and for the full set of the variables.

First of all, from the requirement that the multisoliton state must be an

eigenstate of the operators f’a,ﬁl), ﬂzj we see that the sum (24,25) contains
only one term with

Ty = T{M 4+ 189, 76 = 749, ©(26)

Furthermore, since T' = 7)) + T for the operator of the total isospin squared
we have:

. ~ 2 ~ 2 . R “ - - “
T2 =T 4+ 7" 4 2. 74D 740 4 T_(;) B D LK) (27)
On the other hand,
T, To; T30, T§P) = 1(T + 1)\T, T5; TEV, 762 (28)

and T' = T 4 (), which is consistent with (26) and (27) only if two last terms
i (27) vanish. It leads to the conclusion that both Té”, Tf) have the same sign.

As the result, we see that the multisoliton quantum state |5, T, 53, T3; T(")
has the form of a product of the sector’s quantum states (23) with the relations



T=3 T, §=3 50, Ta=) "1, 5= s, (29)

T:,E'.) = 4+70) {or Téi) = -7y, (30)

S = k0. g6 g5t (31)
Substituting these into the Hamiltonian (20) gives the energy of a soliton:

S T ST (T892
+ + +
20s  2Qr  Qsr JZ 2C;

E=M+ (32)

and the constraint on its spin and isospin quantum numbers
T = maz ZTa(j) . (33)
b

The corresponding calculations of the rotational energies for the solitons with
baryon number three have been worked out. In [9] it was shown that the toroidal
configuration (L = 1, k¥ = {3}) can not have t and 3He quantum numbers. In
fact, the corresponding quantum numbers are T" = 1/2,5=3/2butnot T = 1/2,
S = 1/2 which have to be for t and 3He. It is easy to see from the last formulas
that only non-toroidal configuration (L = 2, k = {1,2}) can have correct quantum
numbers after quantization. Their masses are equal to each other (a possible
coulomb mass differences are not considered). From equation (32) one obtains
that the rotational motion energy is about 23.5 MeV. Classical part of the mass
M in eq.(32) is 2987 MeV. The values of the constants Fy =109.45 MeV and
e = 4.138, which have been used in our calculations, correspond to the values
al which the smallest masses of the solitons with B = 4 and B = 12 coincide
with the masses of the *He and 2C nuclei {10]. It is evident that the adiabatic
rotation motion approximation is more convenient for nuclei than for nucleon.

VII. CONCLUSION

The quantization procedure including the additional new zero modes for the
non-toroidal soliton configurations has been developed. Obtained effective Hamil-
tonian leads to new formulas for eigenvalue spectra of the quantum solitons due to
the additional constraints we have obtained for the quantum numbers of consid-
ered solitons. The non-toroidal solitons (L = 2, k = {1, 2)}) have correct quantum
munbers of t and *He after quantization in contrast to the pure toroidal config-
urations. We have to note here that it is only taking into account the additional
zero modes that leads to this successful picture.
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APPENDIX A: FORMULAS FOR THE MOMENTS OF INERTIA

Here we list the explicit expressions for the parameters in eq.17. It is custom-
ary to use the dimensionless variable z = F-r instead of r.

e, o0 . 4F . 2T
R / sin 0d f 2%dz {—”“‘ (k”s'" cos” T + (T’)2)
0

Fped z? ' sin@
8,

-1

2 gin2 - 2F
+sin?F. |1y ey fi.s";—TﬂT')z) e -(l+coszT)},
4 sinf g z?
(Al)
8; oo A 4F A 4T
G _ 0w ) 2 sin 48in 2 4
QY = Fred /smﬂdﬂ/z dz {— 3 (k.- 7 T+(T) )
8, 0
1 kZain?T gin? F
2 N = 12 3 TI 2) (A2)
+sin® P [4+(F) +(—-sin20 +(T) 2

. 2 T
. (kf ‘:‘1‘12 cos?0 + (T’)z) } ,

9.’ o0
: 4
i L . sin” F
KO = g, Fod f smﬂdﬂ/zzdz {— -
9"._1 0

k2sin® T

e ‘T')’) Z—zF]} (A3)

) (T’sin() —sinT cosch)sz) ,

. 1 ,
+sin? F. [4—+(F)2+(

sm

K;.') = k .Kgi)_
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